On Mixed Memberships and Symmetric Nonnegative Matrix Factorizations
نویسندگان
چکیده
The problem of finding overlapping communities in networks has gained much attention recently. Optimization-based approaches use nonnegative matrix factorization (NMF) or variants, but the global optimum cannot be provably attained in general. Model-based approaches, such as the popular mixed membership stochastic blockmodel or MMSB (Airoldi et al., 2008), use parameters for each node to specify the overlapping communities, but standard inference techniques cannot guarantee consistency. We link the two approaches, by (a) establishing sufficient conditions for the symmetric NMF optimization to have a unique solution under MMSB, and (b) proposing a computationally efficient algorithm called GeoNMF that is provably optimal and hence consistent for a broad parameter regime. We demonstrate its accuracy on both simulated and real-world datasets.
منابع مشابه
On the construction of symmetric nonnegative matrix with prescribed Ritz values
In this paper for a given prescribed Ritz values that satisfy in the some special conditions, we find a symmetric nonnegative matrix, such that the given set be its Ritz values.
متن کاملComputing Symmetric Nonnegative Rank Factorizations
An algorithm is described for the nonnegative rank factorization (NRF) of some completely positive (CP) matrices whose rank is equal to their CP-rank. The algorithm can compute the symmetric NRF of any nonnegative symmetric rank-r matrix that contains a diagonal principal submatrix of that rank and size with leading cost O(rm) operations in the dense case. The algorithm is based on geometric co...
متن کاملAppendix for ``On Mixed Memberships and Symmetric Nonnegative Matrix Factorizations''
1. If a communication class has at least two nodes and is aperiodic, then the rows corresponding to those nodes in T∞ are the stationary distribution for that class. Hence, T∞ has identical rows, so it cannot be full rank. 2. The probability of a Markov chain ending in a transient node goes to zero as the number of iterations k grows, so the column of T∞ corresponding to any transient node is i...
متن کاملOn Reduced Rank Nonnegative Matrix Factorization for Symmetric Nonnegative Matrices
Let V ∈ R be a nonnegative matrix. The nonnegative matrix factorization (NNMF) problem consists of finding nonnegative matrix factors W ∈ R and H ∈ R such that V ≈ WH. Lee and Seung proposed two algorithms which find nonnegative W and H such that ‖V −WH‖F is minimized. After examining the case in which r = 1 about which a complete characterization of the solution is possible, we consider the ca...
متن کاملCanonical polyadic decomposition of third-order semi-nonnegative semi-symmetric tensors using LU and QR matrix factorizations
Semi-symmetric three-way arrays are essential tools in blind source separation (BSS) particularly in independent component analysis (ICA). These arrays can be built by resorting to higher order statistics of the data. The canonical polyadic (CP) decomposition of such semi-symmetric three-way arrays allows us to identify the so-called mixing matrix, which contains the information about the inten...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017